Wolbachia are bacteria that infect many insects, including mosquitoes. However, Wolbachia do not naturally infect Anopheles mosquitoes, which are the type that spreads malaria to humans.
Researchers at the Johns Hopkins Bloomberg School of Public Health found that artificial infection with different Wolbachia strains can significantly reduce levels of the human malaria parasite, Plasmodium falciparum, in the mosquito, Anopheles gambiae. The investigators also determined that one of the Wolbachia strains rapidly killed the mosquito after it fed on blood. According to the researchers, Wolbachia could potentially be used as part of a strategy to control malaria if stable infections can be established in Anopheles.
Their study is published in the May 19 edition PLoS Pathogens.
"This is the first time anyone has shown that Wolbachia infections can reduce levels of the human malaria parasite (Plasmodium falciparum) in Anopheles mosquitoes," said Jason Rasgon, PhD, senior author of the study and associate professor with the Johns Hopkins Malaria Research Institute and the Bloomberg School's W. Harry Feinstone Department of Molecular Microbiology and Immunology.
Their study is published in the May 19 edition PLoS Pathogens.
"This is the first time anyone has shown that Wolbachia infections can reduce levels of the human malaria parasite (Plasmodium falciparum) in Anopheles mosquitoes," said Jason Rasgon, PhD, senior author of the study and associate professor with the Johns Hopkins Malaria Research Institute and the Bloomberg School's W. Harry Feinstone Department of Molecular Microbiology and Immunology.