The carbon
dioxide we exhale and the odors our skins emanate serve as crucial cues
to female mosquitoes on the hunt for human hosts to bite and spread
diseases such as malaria, dengue and yellow fever.
Two entomologists at the University of California, Riverside have now performed experiments to study how female Aedes aegypti -- mosquitoes that transmit yellow fever and dengue -- respond to plumes of carbon dioxide and human odor.
The researchers report in the Oct. 15 issue of the Journal of Experimental Biology that puffs of exhaled carbon dioxide first attract these mosquitoes, which then proceed to follow a broad skin odor plume, eventually landing on a human host.
The results from the study by Ring Cardé, a distinguished professor of entomology at the University of California, Riverside, and Teun Dekker, formerly a graduate student in Cardé's lab and now an assistant professor at the Swedish University of Agricultural Research, could clue scientists on how odors can be used in traps for intercepting and capturing host-seeking mosquitoes.
The researchers report in the Oct. 15 issue of the Journal of Experimental Biology that puffs of exhaled carbon dioxide first attract these mosquitoes, which then proceed to follow a broad skin odor plume, eventually landing on a human host.
The results from the study by Ring Cardé, a distinguished professor of entomology at the University of California, Riverside, and Teun Dekker, formerly a graduate student in Cardé's lab and now an assistant professor at the Swedish University of Agricultural Research, could clue scientists on how odors can be used in traps for intercepting and capturing host-seeking mosquitoes.