Thursday, November 27, 2014

Genomes of malaria-carrying mosquitoes sequenced

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing the genomes of 16 Anopheles mosquito species from around the world.

Anopheles mosquitoes are responsible for transmitting human malaria parasites that cause an estimated 200 million cases and more than 600 thousand deaths each year. However, of the almost 500 different Anopheles species, only a few dozen can carry the parasite and only a handful of species are responsible for the vast majority of transmissions. Besansky and her fellow researchers investigated the genetic differences between the deadly parasite-transmitting species and their harmless (but still annoying) cousins.

Two papers published in today's (Nov. 27) editions of Science Express, an electronic publication of the journal Science in advance of print, describe detailed genomic comparisons of these mosquitoes and the deadliest of them all, Anopheles gambiae. These results offer new insights into how these species are related to each other and how the dynamic evolution of their genomes may contribute to their flexibility to adapt to new environments and to seek out human blood. These newly sequenced genomes represent a substantial contribution to the scientific resources that will advance our understanding of the diverse biological characteristics of mosquitoes, and help to eliminate diseases that have a major impact on global public health.