Tuesday, January 20, 2015

Important mechanism involved in production of mosquito eggs identified

Diseases transmitted by mosquitoes have contributed to the death and suffering of millions throughout human history, earning the mosquito the title as the world's most dangerous animal. Even today, several devastating mosquito-borne diseases (such as malaria, dengue fever and West Nile virus) continue to rage.

The urgent need to better control mosquito numbers and interfere with disease transmission has guided much mosquito research in laboratories worldwide. Female mosquitoes rely on a blood-meal as a source of nutrients required for reproduction. The thinking is that if the mechanisms that govern mosquitoes' egg production are better understood, novel approaches to controlling the reproduction and population of mosquitoes can be devised.

Now a team of scientists at the University of California, Riverside has made a research breakthrough in understanding, at the molecular level, one such mechanism related to the mosquito reproductive process. This mechanism includes small regulatory RNA molecules known as microRNAs or miRNAs.

Monday, January 12, 2015

Hybrid 'super mosquito' resistant to insecticide-treated bed nets

Interbreeding of two malaria mosquito species in the West African country of Mali has resulted in a "super mosquito" hybrid that's resistant to insecticide-treated bed nets.

"It's 'super' with respect to its ability to survive exposure to the insecticides on treated bed nets," said medical entomologist Gregory Lanzaro of UC Davis, who led the research team.

The research, published Jan. 6 in the Proceedings of the National Academy of Sciences, "provides convincing evidence indicating that a man-made change in the environment -- the introduction of insecticides -- has altered the evolutionary relationship between two species, in this case a breakdown in the reproductive isolation that separates them," said Lanzaro, who is director of the Vector Genetics Laboratory and professor in the Department of Pathology, Microbiology and Immunology in the School of Veterinary Medicine.